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Comparison of the Korean and US Stock Markets Using
Continuous-time Stochastic Volatility Models'
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We estimate three continuous-time stochastic volatility models

following the approach by Ait-Sahalia and Kimmel (2007) to compare
the Korean and US stock markets. To do this, the Heston, GARCH,
and CEV models are applied to the KOSPI 200 and S&P 500 Index.
For the latent volatility variable, we generate and use the integrated
volatility proxy using the implied volatility of short-dated at-the-money
option prices. We conduct MLE in order to estimate the parameters of
the stochastic volatility models. To do this we need the transition
probability density function (TPDF), but the true TPDF is not
available for any of the models in this paper. Therefore, the TPDF's are
approximated using the irreducible method introduced in Ait-Sahalia
(2008). Among three stochastic volatility models, the Heston model
and the CEV model are found to be best for the Korean and US stock
markets, respectively. There exist relatively strong leverage effects in
both countries. Despite the fact that the long-run mean level of the
integrated volatility proxy (IV) was not statistically significant in
either market, the speeds of the mean reversion parameters are
statistically significant and meaningful in both markets. The IV is
found to return to its long-run mean value more rapidly in Korea than
in the US. All parameters related to the volatility function of the IV are
statistically significant. Although the volatility of the IV is more elastic
in the US stock market, the volatility itself is greater in Korea than in
the US over the range of the observed IV.
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I. Introduction

esearchers such as Lee and Yu (2018), Choi and Cho (2017), and Yoon (2007)

have reported evidence that Korean and US share prices move together using a
variety of discrete- time econometric models. In addition, Kim (2010), Lee and
Ryu (2013), Han et al. (2015), and Cho et al. (2015) studied the statistical
properties of the VKOSPI and/or the VIX and suggested models to predict these.
On the other hand, continuous-time diffusion models are widely employed to
model and investigate the dynamics of stock prices. Diffusion models have been
useful for stock prices because using them makes it more convenient to evaluate
derivatives. Therefore, it is important and interesting to find a diffusion model that
can describe the evolutions of stock prices well and to determine if two markets
behave similarly in the context of a continuous-time model. The aim of this paper
is not to look into the existence of co-movement in Korean and US stock prices but
to estimate several stochastic volatility models for each country to find which one
fits the data better. Moreover, we compare these two stock markets based on the
estimation results to check whether or not the two countries' stock prices move
analogously.

Although the Black-Scholes-Merton model (Black and Scholes, 1973; Merton,
1973) has been adopted quite often in descriptions of the dynamics of stock prices
since the 1970s, researchers have found that this model is incapable of explaining
certain stylized features of stock prices. These include the time-varying
instantaneous volatility of stock prices and the phenomenon by which stock prices
become more volatile when they decrease, well known as the leverage effect.
Moreover, the implied volatility of options varies with time to maturity, strike
prices, and maturities (Stein, 1989; Ait-Sahalia and Lo, 1998), which cannot be
true if the stock price follows geometric Brownian motion. To address these issues,
researchers have proposed a variety of continuous-time stochastic volatility
models. Examples can be found in Hull and White (1987), Stein and Stein (1991),
Heston (1993), and Lewis (2000).

Ait-Sahalia and Kimmel (2007) demonstrated that estimating continuous-time
stochastic volatility models by maximum likelihood estimation (MLE) with
approximate log-likelihood expansions produces accurate estimates of the
parameters. In doing so, they generate and use an integrated volatility proxy for the
latent volatility variable with the implied volatility of short-dated at-the-money
option prices. Following their approach, we apply their estimation procedure to
three stochastic volatility models, the Heston, GARCH and CEV (constant
elasticity of volatility) processes, to compare the Korean and US stock markets. For
the stock price and the implied variance of an at-the-money option with a maturity
of 30 calendar days, the Korea Composite Stock Price Index 200 (KOSPI 200) and
the VKOSPI for Korea and Standard & Poor's Composite 500 stock index (S&P
500 Index) and the VIX for the US were utilized. The data period is from April 13,
2009 until July 28, 2017, as the VKOSPI data series started to be announced on
April 13, 2009, whereas more data are available for the other variables.

We conduct MLE in order to estimate the parameters of the stochastic volatility
models considered in this paper. To do this we need the transition probability



VOL. 40 NO. 4 Comparison of the Korean and US Stock Markets Using 3
Continuous —time Stochastic Volatility Models

density function (TPDF). However, as is often the case even for a univariate
diffusion process, the true TPDF is not available for any of the models in this
paper. Although the true TPDFs of the stochastic volatility processes are
unavailable, we can approximate them fairly accurately owing to Ait-Sahalia
(2008), who suggests a method to approximate the true TPDF of a multivariate
time-homogeneous diffusion model. Using the fact that the TPDF satisfies
Kolmogorov forward and backward partial differential equations (PDEs), Ait-
Sahalia (2002) and Ait-Sahalia (2008) respectively developed new ways to obtain
an approximate TPDF of a univariate diffusion model and a log-TPDF expansion
of a multivariate diffusion model in a closed form in the time-homogeneous case.
His idea was extended to univariate time-inhomogeneous diffusion models by
Egorov, Li, and Xu (2003); to multivariate time-inhomogeneous diffusion models
by Choi (2013) and Choi (2015b); to a damped diffusion model by Li (2010); to a
multivariate time-homogeneous jump diffusion model by Yu (2007), and to a
multivariate time-inhomogeneous jump diffusion model by Choi (2015a). Other
related papers include those by Bakshi, Ju, and Ou-Yang (2006); Stramer, Bognar,
and Schneider (2010); and Chang and Chen (2011).

Among the three stochastic volatility models investigated, the Heston model and
the CEV model are found to be best for the Korean and US stock markets,
respectively. Based on these estimation results, we find that there exist relatively
strong leverage effects in both countries. Even if the long-run mean level of the
integrated volatility proxy (IV) was not statistically significant in either market, the
speeds of the mean reversion parameters are statistically significant and meaningful
in both. The IV is found to return to its long-run mean value more rapidly in Korea
than in the US. All parameters related to the volatility function of the IV are
statistically significant. The elasticity of the volatility of the IV is 0.50 for Korea
and 0.62 in the US. Although it is more elastic in the US stock market, the
volatility itself is greater in Korea than in the US over the range of the observed I'V.

Looking at the overall estimations results, most parameters of the stochastic
volatility models are quite accurately estimated for both countries. Furthermore,
stochastic volatility models can capture well-known characteristics of share prices
in both countries. This implies that introducing another stochastic factor for the
instantaneous volatility of stock prices is desirable for a better fit of the data for
both Korea and the US. Therefore, the stochastic volatility model appears to be
more appropriate than the Black-Scholes-Merton model in explaining the
movements of stock prices at least for these two countries.

The rest of this paper is organized as follows. We discuss certain features of the
data and how to obtain a volatility proxy from the implied volatility. The next
section introduces the three continuous-time stochastic volatility models employed
in this article. After explaining the estimation method and how to derive the
approximate log-likelihood for our models in Section IV, the estimation results and
discussions are presented in Section V, after which we conclude the paper.

I1. Data and Features

Daily time-series data of the Korea Composite Stock Price Index 200 (KOSPI
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200) and the VKOSPI for the Korean stock market and those of Standard & Poor's
Composite 500 stock index (S&P 500 Index) and the VIX for the US stock market
were attained from Datastream for the period from April 13, 2009 to July 28, 2017.
To compare the Korean and US stock markets, we used the same data period.
Although the S&P 500, VIX, and KOSPI 200 data are available before April 13,
2009, we chose this data period because data for the VKOSPI series started to be
released only on April 13, 2009.

The S&P 500 Index is a market-value weighted index of 500 large firms in the
US and it is known to represent the U.S. stock market well. The Chicago Board
Options Exchange (CBOE) publishes the VIX, which is an index of the implied
volatility of options on the S&P 500. The VIX is calculated using a variety of 30-
day European call and put options on the S&P 500 traded in the market. The
KOSPI 200 is computed as the current market value of 200 large companies in
Korea divided by the base market capitalization as of January 3, 1990. Because the
KOSPI 200 accounts for more than 70% of the market value of all stocks in the
KOSPI, it is a good measure of movements in the Korean stock market. Since April
13, 2009, the Korea Exchange (KRX) has calculated the VKOSPI using a method
very similar to that of the VIX and has reported it to the public. The VKOSPI is the
implied volatility of European call and put options on the KOSPI 200. See Choi
and Han (2009) for more about the VKOSPI. As shown below, we take the
logarithm of the stock price and construct a proxy for the volatility process of the
stock price with the implied volatility to estimate the stochastic volatility models.
The true instantaneous volatility variable is unobservable, and we use a proxy in
place of this variable. Ait-Sahalia and Kimmel (2007) propose a means by which to
create a volatility proxy out of the implied volatility utilizing an idea by Hull and
White (1987) (see also Jones (2003)). This is referred to as the integrated volatility
proxy (IV). Under a risk-neutral measure, the drift of the volatility process V, for

all models estimated here takes the form a+bV[ , where @ and b are

constants. In this case, we are able to obtain the integrated volatility proxy IV,

according to

A A
(1) IV,:bTV’ +a r_a
exp(b-7)-1 b

where V™ is the observed implied variance of an at-the-money option with a

short-maturity 7. In our case V" is (VKOSPI, /100)* and (VIX,/100)’

t
for the Korean and US stock markets, respectively.
In estimating the stochastic volatility models, we utilize a two-stage estimation
procedure. The first stage estimation involves estimating the univariate CEV model

for each case of (VKOSPI, /100)° and (VIX,/100)’. For Korea (the US), we

estimate

2) dY, = k(y=Y,)dt+ oY dW,
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with Y, =(VKOSPI, /100)*(Y, = (VIX, /100)*) to acquire a=xy and b=—k
in equation (1). Using these and V" = (VIX, /100)* or (VKOSPI, /100)* and
setting 7 =22/252 because the time to maturity is 22 trading days (or 30
calendar days), we can construct the integrated volatility proxy, IV, through

equation (1) for both countries." The method of maximum likelihood estimation is
adopted to determine the parameter estimates of (2). In doing so, it is necessary to
have the transition probability density function (TPDF) of model (2) but the true
TPDF is unavailable. Therefore, we make use of the irreducible method in Ait-
Sahalia (2008) to obtain an approximate transition log-likelihood function of
diffusion process (2).2

Maximum likelihood estimates of the parameters of (2) and the formula used to
determine [V, for Korea and the US are provided in Table 1. For both countries,
all parameter estimates are statistically quite significant. Comparing the Korean
and US implied volatilities based on the estimation results, both the speed ( k) and
the long-run average level ( ¥ ) to which the implied volatility reverts are greater in
the US than in Korea. The parameter estimates of 0 and [ reveal that the VIX

is more volatile than the VKOSPI and that the elasticity of the volatility of the
implied volatility with respect to the implied volatility is close to 1 for both
countries. The integrated volatility proxy formula is calculated through equation
(1) and provided directly below each country's estimation results.

TABLE 1—PARAMETER ESTIMATES FOR THE UNIVARIATE CEV MODEL FOR VKOSPI AND VIX

K y o) B
4.27%* 0.03]** 1.65%* 0.97%*
Korea (1.42) (0.0053) (0.037) (0.0048)
1V, =-0.0061+1.1979(KOSPI, / 100)2
5.41%* 0.037%** 2.40%* 0.99%*
Us (1.95) (0.0070) (0.060) (0.0065)

1V, =-0.0095+1.2545(VIX, / 100)*

Note: Maximum likelihood estimates of the parameters of the univariate CEV model for the VKOSPI and the VIX
and their standard errors in parentheses are given in this table. The two asterisks next to the estimate indicate
statistical significance at the 1% level. Directly below each country's estimation results, the integrated volatility
proxy formula is calculated through equation (1) and provided.

2 2
'We could use (VIX ; /100) and (VKOSPI, /100)  as proxies of the true instantaneous volatility state

variables for the US and Korea, respectively. However, as Ait-Sahalia and Kimmel (2007) argue, using these
unadjusted Black-Scholes proxies introduces significant bias in the estimation of the elasticity of volatility
parameter for the more general CEV model. They remedy this by correcting for the effect of the mean reversion of
the volatility and provide equation (1) to calculate the integrated volatility proxy, IV, from unadjusted Black-

Scholes proxy, Vti’"p .In doing so, weneed « and b5 inequation (1), which are estimated from equation (2).
*Because model (2) is univariate and reducible, the reducible method can be used to find the approximate

TPDF. To use the reducible method, however, we need to consider three different cases, where 0< <1,

p=1 and F>1, and find the approximate TPDF for each case, which can be cumbersome. See Ait-Sahalia

(1999) for more on this. Instead, if we use the irreducible method, we do not have to take these three cases into
account separately.
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Daily Observations of the KOSPI 200 and VKOSPI
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FIGURE 1. DAILY KOSPI 200 AND VKOSPI

Note: Daily observations of the KOSPI 200 and the VKOSPI data from April 13, 2009 to July 28, 2017 are depicted
in Figure 1. The left y-axis is for the KOSPI 200 plot in blue and the right y-axis is for the VKOSPI plot in red.

Figure 1 displays daily time-series plots of KOSPI 200 and VKOSPI from April
13, 2009 to July 28, 2017. The left y-axis is for the KOSPI 200 plot in blue and the
right y-axis is for the VKOSPI plot in red. A visual inspection of Figure 1 indicates
that the implied volatility tends to increase, particularly when the stock price falls.
This phenomenon is well known as the leverage effect. The sample correlation
between the KOSPI 200 and VKOSPI in Table 2 is -0.60, which confirms the
leverage effect in the Korean stock market. We also note that the VKOSPI tends to
revert to a certain level, which we refer to as the long-run mean.

In the top panel of Figure 2, daily changes in the KOSPI 200 and the VKOSPI
data are plotted. Here, the left y-axis and the right y-axis denote the changes in the
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FIGURE 2. THE TREND OF THE GROWTH RATE OF PRODUCTIVITY
Note: In the top panel of Figure 2, daily changes in the KOSPI 200 and the VKOSPI data are plotted. Here, the left y-

axis and the right y-axis denote the changes in the KOSPI 200 and the VKOSPI, respectively. Daily changes in the
VKOSPI are graphed in the bottom panel of Figure 2.
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KOSPI 200 and the VKOSPI, respectively. This figure shows that the implied
volatility increases with the variance in the stock price. Daily changes in the
VKOSPI graphed in the bottom panel of Figure 2 verify that the variability of the
implied volatility is likely to increase as the implied volatility increases. Stochastic
volatility models are capable of capturing these characteristics.

Descriptive statistics pertaining to the daily KOSPI 200 and the VKOSPI,

In(VKOSPI) , and the integrated volatility from April 13, 2009 to July 28, 2017
are computed in Table 2. Here, the skewness coefficient, 14 / 0’ and the degree

of excess, 4,/ o' -3 are respectively normalized measures of the asymmetry
and the thickness of the tails of the distribution relative to the standard normal
distribution. Note that for a random variable X,, y#, =FE [(X .~ ,u)i] and

o’=E [(X , —,Lt)zl Both the skewness coefficient and the degree of excess

imply that none of these data series have normal distributions. Negative strong
correlations between the KOSPI 200 and the VKOSPI, and In(KOSPI 200) and
the IV, show there is a strong leverage effect in the Korean stock market. Again,
what we use to estimate the stochastic volatility models are In(KOSPI 200) and
the IV. Integrated volatility is nothing but a linear transformation of implied

volatility, which does not affect the correlation, whereas taking the logarithm of the
KOSPI 200 does. Even so, there is a solid negative correlation between
In(KOSPI 200) and the IV.

Similarly to Figure 1, Figure 3 depicts the daily observations of the S&P 500 and
the VIX from April 13, 2009 to July 28, 2017. The left y-axis is for the S&P 500
plot in blue and the right y-axis is for the VIX plot in red. We can observe a greater
leverage effect in the US stock market than in the Korean stock market. Looking at
Table 3, the sample correlation between the S&P 500 and the VIX is negative and
greater than the corresponding Korean correlation in terms of the absolute value.
The same is true for In(S'& P 500) and the IV.

The top panel in Figure 4 depicts the daily changes in the S&P 500 and the VIX
data. Here, the left y-axis is for the changes in the S&P 500 and the right y-axis is

TABLE 2—SUMMARY STATISTICS
Std. Excess

Obs. Minimum  Maximum Mean Dev Skewness Kurtosis corr
KOSPI 200 2165 167.24 322.01 248.71 23.95 -0.55 1.59
VKOSPI 2165 9.72 50.11 17.56 6.09 1.70 345 -0.60
In(KOSPI200) 2165 5.12 5.77 5.51 0.10 -1.04 2.33
v 2165 0.0052 0.29 0.035 0.034 2.82 10.17 -0.57

Note: Descriptive statistics for the daily KOSPI 200, the VKOSPI, In(KOSPI200), and the integrated volatility

from April 13, 2009 to July 28, 2017 are computed. Here, the skewness coefficient u,/ o and the excess kurtosis

u, /o* -3 are respectively normalized measures of the asymmetry and the thickness of the tails of the distribution relative

to the standard normal distribution. Note that for a random variable X > ,u‘_:E[( X —/1)’} and UZ:E[( X —,u)z} .



for the VIX. Daily changes in the VIX are graphed in the bottom panel of Figure 4.
As in Figure 2, the changes in both the S&P 500 and the VIX are considerable,
especially when the level of the VIX is high. This demonstrates that the volatility
of stock prices depends on the implied volatility and that the volatility of the
implied volatility appears to be an increasing function of the implied volatility.

We tabulate summary statistics of the S&P 500, the VIX, In(S & P 500), and

the IV in Table 3. Examining the skewness coefficient and the degree of excess of
all US data, they are far from normal. There exist leverage effects in the US stock
market, and they are stronger than those in the Korean market because the sample
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TABLE 3—SUMMARY STATISTICS

Obs.  Minimum Maximum Mean gted\'/ Skewness lfli(rizis corr
S&P 500 2165 832.39 2477.83 1639.33  436.06 0.063 -1.32
VIX 2165 9.36 48 18.22 6.34 1.37 1.79 -0.68
In(S & P 500) 2165 6.72 7.82 7.36 0.28 -0.23 -1.20
v 2165 0.0015 0.28 0.037 0.037 225 6.14 -0.64

Note: Descriptive statistics for the daily S&P 500, the VIX, In(S& P 500) and the integrated volatility from April

13,2009 to July 28, 2017 are computed. Here, the skewness coefficient /13/0-3 and the excess kurtosis 4/cr“ -3
are respectively normalized measures of the asymmetry and the thickness of the tails of the distribution relative to

the standard normal distribution. Note that for a random variable X M =E [( X, —u) } and o’ :E[( X —u)z} .

correlations between the S&P 500 and the VIX and In(S & P 500) and IV are all

negative and closer to -1 than those for Korea.

Although we have discussed certain features of the Korean and US stock market
data using data plots and descriptive statistics, it is more important to check if we
can find any evidence to support the observations by estimating with appropriate
econometric models, such as stochastic volatility models.

I1I. Three Stochastic Volatility Models

Three different continuous time stochastic volatility models have been used to
describe the dynamics of the data. These are the Heston, GARCH and CEV
models. The former two are nested by the CEV model.

A. Heston Model

The Black-Scholes-Merton model (Black and Scholes, 1973; Merton, 1973) has
been quite popular because it provides a closed-form formula for a European
option on an asset. In this model, the underlying asset price follows geometric
Brownian motion which is, however, known not to explain the movements of this
type of data well. To improve upon the Black-Scholes-Merton model Heston
(1993) suggests the following stochastic volatility model.

o SN[ =8 INA=p WS pvS, | (wE
v,) LK/ -V) 0 oV, | W)

where WUQ and W;? are independent Brownian motions under the risk neutral

measure. And 7 is the instantaneous risk-free interest rate and d is the
instantaneous dividend yield of the stock. As noted in the previous section, there is
some evidence that continuously compounded stock returns are not normal and that
their variances are not constant for the KOSPI 200 and the S&P 500 data. For this
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reason, the variance process V, is introduced for the variance of S, . In addition,
the stock price is allowed to be correlated with the variance. The parameter 0

measures the correlation between S, and V,. The volatility process V, obeys

the square root process of Feller (1952), and Feller’s condition 2k’y’ > o must
hold for the variance ¥, to be positive.

Expressing (3) in terms of s, =In.S, and V,, we obtain

) d(s’]{r_d_;l/’}dﬁ =0V, o\, d(W"QJ,

V) | K- 0o ofV| e
due to Ito’s lemma. As in Ait-Sahalia and Kimmel (2007), we specify the market

T
prices of risks as [ﬂﬂ/(l—pz)l/g,/ll\/? t:| . Then, according to the Girsanov

theorem, the joint dynamics of s, and V, under the objective measure P are

determined by

d(qj_{r—dﬂ?%}dﬂ_ JA=p, pyV, d[WJ’j,

5 -
® v)7L k) S e U

t

where b:ﬂ,l(l—pz)+ﬁ,2p—%, K=Kk'-A,0, and y=(mJV One

problem with (5) is that we cannot identify both A, and A, when we estimate

the parameters of model (5) using the maximum likelihood estimation (MLE)
method. To resolve this issue, we set 4, =0 following Ait-Sahalia and Kimmel

(2007). Model (5) reduced to

2 1 2 P
© dm: r=d+[40=p) =Y, | NA=P, d(WuP}
v K(y-V,) 0 N ARUS

t

Thus, the parameter vector we need to estimate is 9:(1(, v,0, 0, r,/l,). The

parameter X indicates the speed of the mean reversion of V) to its long-run

mean level, ¥ and the parameter o measures the correlation between the

innovations of the stock price and the volatility. We hold that there is a leverage
effect when it takes a negative value.
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B. GARCH Model

Another interesting model examined here is the GARCH model (Nelson, 1990;
Meddahi, 2001). In this case, the stock price and its variance follow

o M L)

V,) LKW =V) 0 oV,

t

under the risk-neutral measure. The lone difference between the Heston model and
the GARCH model is that the volatility function of V, for the latter is ¥, while it

S \/7[ for the former. The condition k”)’ >0 is required to ensure positivity of

the variance V.

If we write model (7) in terms of (s,,V,) we obtain the following with Ito’s lemma:

dU { —d-1¥, },{W pq (w}

V) | k&7 -V) 0 ov, | \ WY

T
Using the same market price specification, [ﬂj\/(l— oV, O} as above,
(s,,V)) obeys

» G

v, K(y=V,) 0

t

under the physical measure P, where b=A(1-p N—>, k=K', and Y=Y .

The resulting model (8) contains the same set of parameters appearing in model
(6). This model is also nested by the CEV model below.

C. CEV Model
The final model we consider is the CEV model.

o e[ )

V.) | K -V) 0 oV?

t

The two models above are encompassed by this model given that we have the
Heston model when S =1/2 and the GARCH model when f=1. Chan,
Karolyi, Longstaff, and Sanders (1992) proposed the constant elasticity of volatility
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(CEV) model for short-term interest rates. In this model, the volatility of the
volatility process V, follows the CEV process, which is why we refer to this

model as the CEV model. Note that the parameter /3 indicates the elasticity of
the volatility of V, with respect to V,. Lewis (2000) and Chacko and Viceira

t
(2003) also adopted the CEV model for the volatility variable.
Again, if we write model (9) in terms of (s, =1In(S,), V),

dm: r=d =3V | A=W or, dEWI?}
v Lk -v) o o/ ]y

t

T
With the same assumption for the market prices of risk, [/1“/(1— pz)K , OJ

as in the Heston and GARCH models, according to the Girsanov theorem, the
dynamics of the state variables are expressed as

(10) d[;j{r_“qut{m pﬁ}d(w},

k(y—=V,) 0 ov? | \ Wy

t

where b=A4(1- 0°) —% , k=k", and ¥=) under the physical measure P .

We impose the restriction 1/ 2< <1 to ensure the uniqueness of option prices,
as in Ait-Sahalia and Kimmel (2007).

IV. Estimation Method

To estimate the models considered in this paper, we use the maximum likelihood
estimation (MEL) method. We only have discrete data for the continuous-time

process, X, =(s,,V,) at discrete time points ¢=iA where i=0,1,2,---, n.
The joint probability density function (pdf) of the data (x,,, X, s "5 X5 X))

is then

P(X,55 Xunyan 05 Xa» Xo3 0)

= P(X0 [ X0iar 775 Xas X3 O)XP(X 100 [ Xuiayas 705 Xas Xg5 O)X
s X (X, | X5 X3 @)X p(xy | %05 O)X p(xy; O)

= P [ X005 O)X P(X(pyp | Xu2)as O)X
X Py [ X35 O)X Py [ x55 O)X p(x; 6).

Here the first equality is due to the Bayes' rule and the second equality stems
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from the Markov property of a diffusion process. Taking the logarithm of the joint
pdf and ignoring the initial observation, the log-likelihood function is written as

(11) In(@) = Y In| plxy [ X0 0)].

Therefore, in order to carry out MLE, it is critical to have the transition density
or log- likelihood function of stochastic volatility models. Unfortunately, the true
transition density function is not known for any of the models we use in this paper,
as is often the case for diffusion processes. Ait-Sahalia (2008) generalized Ait-
Sahalia (2002) to obtain an explicit formula of an approximate transition density
function of a multivariate time-homogeneous diffusion model. Since then, there
have been more studies focusing on finding closed-form approximate transition
density functions of diffusion processes, as discussed in Section 1. We employ the
approach by Ait-Sahalia (2008) to obtain approximate transition densities of all
models in this article.

In order to account for the method of Ait-Sahalia (2008) briefly for a general
two-dimensional model, let us look at a two-dimensional diffusion process
X, =X, X,)

to

) (anj:(ﬂl(Xt; e)j dt{a“(x,; 0) o,(X; 0)) .

dx,, w(X,; 0) 0,(X;;0) 0,(X;0)

A diffusion process is said to be reducible if it can be transformed into a unit
diffusion whose volatility function is the identity matrix. If a diffusion model is
reducible, an approximate log-likelihood function can be derived explicitly using
the Hermite expansion or the Kolmogorov method. Ait-Sahalia (2008) and Choi
(2013) present additional details of the reducible method. To determine if model
(12) is reducible, it suffices to check the following necessary and sufficient
conditions for a two-dimensional diffusion process,

do; ' (t,x) _ do;,) (t,x) ond 905, (t,x) _ 905, (t,x)
ox, ox, ox, ox,

where O'Z;.l(x;ﬁ), i=1,2 is the (i, j) element of the inverse matrix of the

volatility o(x;68) in (12). However, when checking these equalities for the

Heston, GARCH, and CEV models, none of them are found to be reducible. In this
case, although the reducible method is not applicable, the irreducible method can
be adopted to obtain a closed-form approximate log-likelihood function. The
irreducible method is more general than the reducible method, and it can be applied
to any multivariate diffusion process, roughly speaking, as long as it has
differentiable drift and volatility functions.

The starting point when deriving an approximate log-likelihood function
employing the irreducible method is to surmise the functional form as that acquired
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for reducible diffusions:

1A, x| x,;0)
(13)

(-
=—In(27A) - D, (x; .0)+Sx (AA’“"CO’H) ZC<K>(Ax|xO,e)

k=0

It is well known that the true log-likelihood function satisfies the Kolmogorov forward
and backward partial differential equations (PDEs). The former is

(14)

oL, (AX|%:0) o (x;:0) 1 00,(x:0) oL, (A, x| x,;60)
— 2 =y Ty (x;,0)——————
oA D P ax0x, 2HwO=E=

1

i=1
2 9v,(x;0) a1, (Ax|x0 0, 9’1y (A, x| x,;6)
) . ’0 X\ 0
+§:1 ox ZU (x:6) 0x,0x,

i / z/l

L1 Z Al (A, x| x,;0) 0, (x; g)alX(A,x|xO;t9) .
25 ox, ox,
Therefore, if we substitute [\ (A,x|x,;6) for I,(A,x]|x,;0) in equation
(14) and equate the same order terms of A, we can obtain the following PDEs of
the coefficients C) (A, x| x,;0), k>-1.

. 2 ACCV (A, x| x,:0) 9CCV(A, x| x,:0
(15) —2C§(1)(A,x|x0;<9)=ZUij(x;g) - (ax.| 2 2 (ax = )

i,j=1 i J

=GP (A, x| x,;0).

16) =3 v, (x;0) G (Ax1x050) G (A, x| x,;0)
i,j=1 v axl. axj

and for all £>1

S ACS" (A, x| %,360) ICL (A, x| x,;0)
CE{")(AJ”O?@)—;Z%(M@) X = 0 Y axj o

i,j=1 i

=GP (A, x| x,;0),

where
G}O) (A, x| x,;0)

2 (=1 o (-1
1-3 0 (x:0) 2% (Ax“‘o’@) £y “u(x ) 9C (A, x| x,:0)
i=1

ox

, i,j=1 j

: b -1 .
-3 1, (5,6 2C (Ao 1%,:6) 9D (x 9) —Z o, (r:0) L CE (B :0)
=i ox, 2577 0x,0x,

1
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GV (A, x| x,;0)

=>4 (x:0)

ac“”(A x|x0,9) Z v,,(x 0) 0CY (A, x| x,;6)
ox,

i,j=1

2
C(O)(A x|x 6) oD, (x; 6) 9°CY (A, x| x,;0)
- v.(x;0 9 v,(x;6 XA - 0
,; (3:6) ox, 0x; 2,,21 (x:6) 0x,0x;
i Zv.(x.e)E)Cﬁf)(A,ﬂxo;H)8C§f)(A,x|xo;6’)
25 ’ ox, ox;

o (x;0) 1 & 0°0,(x:60) oD (x ) v, (x;6) 0D, (x;6)
SNl s A S el At 9
21 o 2 ]ZI ox0x, Zl #50) ”ZI o ox,
1 z (x:0) 9’D, (x;0) _ 0D, (x;0) 9D, (x;0)
Y 0x,0x; ox, ox

ljl J

and when k2>2

Gy (A, x| x,30)

2 ACY (A .0 (x 0) aC (A, -6
z_gﬂl(x’e) (a x|'x0 ) z (axx|x0 )

i,j=1 j
A, x| x,;6) 3D, (x; 9) 2CHD (A, x| x,;6)
0 22 z]( 0) X 0

- v,(x;0) ICy

i,j=1 ij 4 axi axj i,j=1 axiaxj
2 (0) . (1) '
+ZUIJ(X,H) aCX (Aapx|x099) aCX (A’x|x0’9)
e i ox;
S(k-1ac? . et ‘
+— ZU.(x;H){Z( . ]acx (Aa,XIxo,ﬁ) ACHM (A, x| x;6)
g & = Xi ax/

It is important to note that v(x;0)=0(x;0)0(x;0)" and o(x;0)" is the
transpose of 0(x; ).
When X, is reducible, the explicit solutions of the above PDEs of

CP(A,x|x,);6) can be found (see Choi (2015a)). Alternatively, X, can be

transformed into a unit diffusion process with the findings in Ait-Sahalia (2008)
then used to obtain the closed-form approximate log-likelihood function. However,
none of our models are reducible. Even so, we can turn to the irreducible method
developed by Ait-Sahalia (2008). The major idea of the irreducible method is to

Taylor-expand each coefficient C’(A,x|x,;6) and all of the other functions of x
around X, in the above PDE. Subsequently, equating the same orders of (x—Xx,)

yields an approximate coefficient of C\(A,x|x,;6). The approximation order J,
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of C¥(A,x|x,;0) is set to have an approximation error identical to o, (AFH
of the approximate log-likelihood function. Specifically, j, =2(K—k+1), for
instance, when k=2, the orders of the Taylor expansion are j , =8, j, =6, j =4,
and j,=2. We denote the j,-th order Taylor expansion of C\(A,x|x,;6) by
Cg{’j")(A,x|x0;(9), k >—1. The procedure of finding Cgf’j")(A,x|x0;9) from

the PDE of C(A,x|x,;6) must be done from a low order to a high order
recursively because the latter is generally dependent on all of the low-order terms.

k. . .
Moreover, Cy7(A,x|x,;6) must be retrieved in sequence from k=-1

sequentially because the PDE of CV(A,x|x,;0) usually contains all of the

previous terms.” In this manner, we are able to obtain the approximate log-likelihood
function up to any order.”

V. Estimation Results

We have estimated the Heston, GARCH and CEV models presented in Section 3
using daily observations of the KOSPI 200 for stock prices and the integrated
volatility as a volatility proxy constructed from the daily VKOSPI data for Korea.
We also conducted the same estimation using the daily S&P 500 and the VIX for
the US stock market to compare the Korean and US stock markets. The estimation
results are displayed in Table 4. Note that the CEV model encompasses the other
two stochastic volatility models, as noted above.

MLE was carried out with the approximate log-likelihood function obtained by
applying the irreducible method. In doing so, [ is found to converge to 0.5,

which amounts to the Heston model for Korea. However, this does not arise in the
case of the US stock market. Therefore, we do not report estimation results of the
CEV model for Korea. Two information criteria, AIC and BIC,” are reported in the
last two rows of Table 4. Both AIC and BIC prefer the Heston model to the

*The Kolmogorov backward partial differential equation for the log-likelihood function of X ;I8

. 2 .
ol (A,x]x,;6) Y u ﬂ)azx(A,x\xo;a) 1 é o (x 'H\ale(A,x\x0;9)+1 231, (Axlx,;6) e ol (A,xlx;0)
oA oo ox . 2 ST gy 22 ox jiro ox .
i=1 0i i=1,j 0f i=l,j 0f 0/

Employing the backward PDE instead of the forward PDE, we obtain the PDEs of the coefficients in x; and

A. Using those PDEs of C;k)(A,x\xO;G) , the same Taylor expansions of the coefficients can be retrieved. Thus,

which PDE is used is irrelevant.

*We can also obtain an approximate transition probability density function. Choi (2015b) presents more
information about how to obtain the approximate transition probability density function from the approximate log-
likelihood function.

5 AIC:—EIn L(x,ém)+2£ and B[C:—EInL(x,HAML)Hn(n)E, where »n is the number of observations minus
n ! n n ’ n

one and & is the number of parameters for each model. In addition, L(x, é,m ) is the likelihood value evaluated

at the maximum likelihood estimates.
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GARCH model for Korea because the Heston model has smaller AIC and BIC
values than the GARCH model. On the other hand, the CEV model is selected by
AIC and BIC, as the CEV process yields the smallest AIC and BIC values among
the three models.

The parameter © measures the correlation between the logarithm of the stock
price and the integrated volatility proxy. For the Heston process of the Korean
stock market, the estimate of o is -0.61 and is statistically different from zero at
the 1% level. We also obtained similar results for p in the GARCH model. These
estimates are quite analogues to the sample correlation between the In(KOSPI 200)
and IV, which shows that there exists a strong leverage effect in the Korean stock
market. Like the Korean stock market, the US stock market also appears to have a
leverage effect. From the CEV model, we found that 0 =-0.62, statistically
significant at the 1% level, while 0 =-0.73 and —0.70 for the Heston and
GARCH processes, respectively. For the US, the CEV model engendered an
estimate of the leverage effect of -0.64, much closer to the sample correlation
between the In(S & P 500) and the IV as compared to the other two nested models.

The speed of reverting to the long-run mean level of the IV is very accurately
estimated to be 6.09 for the Heston model, while it is 6.93 for the GARCH model for
Korea. For the US stock market, the estimate of k is 5.50 for the CEV process and

TABLE 4—MAXIMUM LIKELIHOOD ESTIMATION RESULTS OF
STOCHASTIC VOLATILITY MODELS FOR KOREA AND THE US

Korea UsS
Heston GARCH CEV Heston GARCH CEV
-0.61%* -0.63%* ) -0.73%* -0.70%** -0.62%*
p (0.0040) (0.00022) (0.000046) (0.000061) (0.000079)
6.09%** 6.93%** ) 2.85%* 2.59%* 5.50%*
K (0.049) (1.91) (0.051) (0.95) (0.11)
0.032 0.016 ) 0.058 0.00013 0.035
14 (0.18) (3.44) (0.34) (2.79) (0.35)
0.46** 1.34%* ) 0.58** 1.14%* 0.60%**
o (0.0056) (0.00048) (0.00022) (0.00014) (0.0043)
1 3.95%* 4.42%%* ) 4.94%* 4.42%%* 3.00%*
(0.15) (0.31) (0.13) (0.12) (0.12)
—d 0.0000 0.0000 ) 0.0005 0.0003 0.011
r (2.36) (2.87) (1.16) (2.33) (1.31)
0.62%*
ﬁ 0.5 1 - 0.5 1 (0.0025)
log-lik 16114.25 14388.93 - 15450.66 22179.40 23880.50
AIC -14.9198 -13.2975 - -14.2788 -20.4976 -22.0698
BIC -14.9172 -13.2949 - -14.2762 -20.4950 -22.0672

Note: Maximum likelihood estimation results of the Heston and GARCH models for Korea and the Heston,
GARCH, and CEV models for the US are tabulated in this table. No estimation results are given for the CEV
model of Korea because the CEV model converges to the Heston model for the Korean data. The last three rows
display the maximized log-likelihood, AIC and BIC values for each case. The two asterisks by each estimate imply
statistical significance at the 1% level. From the second column to the seventh column, the estimation results for
the Heston and GARCH models for Korea and for the Heston, GARCH and CEV models for the US are
correspondingly presented.
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2.85 and 2.59 for the other two models, correspondingly. All estimates of X are
statistically greater than zero at the 1% significant level. The volatility of the
Korean stock market has been found to revert to its long-run mean more rapidly
than that of the US stock market. Computing the expected time® it takes for the IV
process to return to the middle value between the current value of IV and the long-
run mean level of the IV based on the estimate of x from the best model for each
country, it is 28.68 business days for Korea and 31.76 business days for the US.
Even if we obtained statistically significant estimates of the speed of mean
reversion for all cases, none of the long-run mean levels y are statistically

significant. Even so, the estimate of y of the preferred model for each country,

the Heston model for Korea and the CEV model for the US, is similar to the
sample mean of the integrated volatility proxy variable. Figures 5 and 6 draw these
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FIGURE 5. DAILY OBSERVATIONS OF THE INTEGRATED VOLATILITY AND  J/
FOR THE HESTON MODEL OF KOREA

Note: Figure 5 draws a daily time-series plot of the integrated volatility proxy of Korea. The horizontal line is the
estimated long-run average from the Heston model.
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FIGURE 6. DAILY OBSERVATIONS OF THE INTEGRATED VOLATILITY AND }9
FOR THE CEV MODEL OF THE US

Note: Figure 6 draws a daily time-series plot of the integrated volatility proxy of the US. The horizontal line is the
estimated long-run average from the CEV model.

The amount of expected time it takes for a mean-reverting process to revert halfway back to the long-run
mean value is termed the half-life. For a diffusion process with a linear drift function (X, - y) , the half-life is

In(2) / k. Because we use daily observations, the number of half-life days can be calculated as 252:In(2) / k.
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estimates of ¥ with the integrated volatility proxy values during the data period

for Korea and the US. It appears to be reasonable to contend that the IV reverts to
the estimated long-run mean value for both countries. We did not obtain a
statistically significant estimate of y most likely because there may be more than

one data-generating process depending on the state of the economy. Using a
regime-switching model, we may be able to attain statistically more significant
estimates of ¥, as found by Choi and Yuan (2018) for the US. It can be interesting

to determine if there is more than one regime and, if so, how the estimates of the
long-run mean and mean reversion speed differ in different regimes for the Korean
stock market. This is left as future research.

Like the parameter ¥, no significant estimate of »—d was obtained for any of

the models for any country.” The market price of risk for the stock price variable
has been estimated to be significant in all cases. For Korea, these values are 3.95
and 4.42 for the Heston and GARCH models, respectively. In the case of the US,
they are 4.94, 4.42 and 3.00 respectively for the Heston, GARCH, and CEV
processes. Using the best model for each country, the market price of risk for the
stock price is found to be more expensive in Korea.

Finally, looking at the parameters associated with the volatility function of the
integrated volatility proxy, all of them are statistically greater than zero. In fact, it
is more informative to draw and compare the volatility functions of the IV. Figure 7
depicts the volatility functions evaluated at the ML estimates with their 95%
confidence bands over the range of the observed integrated volatility proxy for each
country. The GARCH process underestimates (overestimates) the volatility of the IV
when the 1V is small (large), as indicated in the left panel of Figure 7 given the
evidence that the Heston model is preferred to the GARCH model in Korea. The
CEV model is better than the other two models and the Heston and GARCH
processes overestimate the volatility of the IV for all observed values. Contrasting

0.4 0.4
0.3 GARCH 0.3
B
= =
% g Heston
T 0.2 © 0.2 <— GARCH
o <]
> >
0.1 0.1 ~_
CEV
o] 0
0 0.1 0.2 0.3 0 0.1 0.2 0.3

FIGURE 7. VOLATILITY FUNCTIONS OF THE INTEGRATED VOLATILITY FOR KOREA AND THE US

Note: The panel on the left and that on the right in Figure 7 depict the volatility functions of the integrated
volatility proxy of Korea and the US, respectively. The volatility functions of the /} in the Heston and GARCH
processes for Korea and those in the Heston, GARCH and CEV processes for the US are evaluated at the
maximum likelihood estimates over the range of the IV observed. The dotted lines are 95% confidence bands.

’Ait-Sahalia and Kimmel (2007) did not estimate this parameter. In fact, the instantaneous interest rate and
dividend yield for stocks were held fixed at 4% and 1.5% per year, respectively.
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the Heston model of Korea and the CEV model of the US, the [} is more volatile
in Korea than in the US for the entire range of the V.

We have found that most estimates of the parameters of the stochastic volatility
models examined here are quite accurate for both stock markets. Furthermore,
stochastic volatility models can capture well-known characteristics of share prices
in both countries. This implies that introducing another stochastic factor for the
instantaneous volatility of the stock price is desirable to fit the data better for both
Korea and the US. Therefore, the stochastic volatility model appears to be more
appropriate than the Black-Scholes-Merton model in explaining the movements of
stock prices at least for these two countries.

VI. Conclusion and Discussion

This article estimates the three continuous-time stochastic volatility models of
the Heston, GARCH, and CEV models using daily data from KOSPI 200 and the
VKOSPI for Korea and daily observations of the S&P 500 Index and the VIX for
the US. We generate an integrated volatility proxy for an unobserved volatility
variable using the implied volatility of an at-the-money option maturing in 30
calendar days. The VKOSPI and the VIX are the implied volatilities employed,
respectively, for the Korean and US stock prices. MLE is utilized to estimate the
parameters of these three models. To do this, we need the transition probability
density functions (TPDFs) of our diffusion processes. However, the true TPDFs are
not known for any of our models. Therefore, we adopt the irreducible method
suggested by Ait-Sahalia (2008) to approximate the TPDF in a closed form
accurately.

We were able to identify well-known features of stock prices in both countries.
The Heston model and the CEV model are found to be best among the three models for
the Korean and US stock markets, respectively, according to the information
criteria, AIC and BIC. From the estimation results, we find that there are relatively
strong leverage effects in both countries. The long-run mean level of the integrated
volatility proxy (IV) was not statistically significant in either market. This appears
to be due to the fact that we attempt to fit the data using only one data-generating
process. It may be more reasonable to contend that stock prices are governed by
more than one data-generating process depending on the economic weather. The
CEV model converges to the Heston model for Korean stock prices possibly for the
same reason. The speeds of mean reversion parameters are statistically significant
in both markets. The IV is found to return to its long-run mean value more rapidly
in Korea than in the US. All parameters related to the volatility function of the IV
are statistically significant. The elasticity of the volatility of the IV is 0.50 for
Korea and 0.62 in the US. Although it is more elastic in the US stock market, the
volatility itself is greater in Korea than in the US over the range of observed IV
outcomes. The mean-reversion speed and the volatility of the IV may vary
depending on the economic conditions. If we allow the parameters to change over
time, we may be able to obtain more interesting results. Choi and Yuan (2018)
found strong evidence of regime-switching in the US stock market. It would be
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valuable to investigate Korean stock markets using regime-switching stochastic
volatility models, which is an ongoing research topic.

Finally, we found evidence that there exists a strong leverage effect in both
countries. This means that investors who buy stocks on margin are more likely to
suffer large losses, particularly when the stock market is in a downturn. Therefore,
in order to stabilize the stock market, it appears to be necessary for policymakers to
prohibit excessive purchases of stocks on credit.
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